The Mole Concept

Avogadro's Number = 6.022×10^{23}

Counting Atoms

- Chemistry is a *quantitative* science we need a "counting unit."
- The MOLE

 1 mole is the amount of substance that contains as many particles (atoms or molecules) as there are in 12.0 g of C-12.

AvogadroP aper

The Mole is Developed

Carbon Atoms		Hydrogen Atoms		Mass Ratio
Number	Mass (amu)	Number	Mass (amu)	Mass carbon / Mass hydrogen
	12	•	1	<u>12 amu</u> = <u>12</u> 1 amu 1
	24 [2 x 12]	• •	2 [2 x 1]	<u>24 amu</u> = <u>12</u> 2 amu 1
	120 [10 x 12]	••••	10 [10 x 1]	<u>120 amu</u> = <u>12</u> 10 amu 1
	600 50 x 12]		50 [50 x 1]	<u>600 amu</u> = <u>12</u> 50 amu 1
Avogadro's number (6.02 x 10 ²³) x (12)	Avogadro's number (6.	02 x 10 ²³) x (1)	$\frac{(6.02 \times 10^{23}) \times (12)}{(6.02 \times 10^{23}) \times (1)} = \frac{12}{1}$

Particles in a Mole

Amadeo Avogadro

Amedeo Avogadro (1766-1856) never knew his own number; it was named in his honor by a French scientist in 1909. its value was first estimated by Josef Loschmidt, an Austrian

chemistry teacher, in 1895.

There is Avogadro's number of particles in a mole of any substance.

Careers in Chemistry -Philosopher

Q: How much is a mole?

A: A mole is a quantity used by chemists to count atoms and molecules. A mole of something is equal to 6.02 x 10²³ "somethings."

$1 \text{ mole} = 602\ 200\ 000\ 000\ 000\ 000\ 000\ 000$

- Q: Can you give me an example to put that number in perspective?
- A: A computer that can count 10,000,000 atoms per second would take 2,000,000,000 years to count 1 mole of a substance.

How Big is a Mole?

One mole of marbles would cover the entire Earth (oceans included) for a depth of three miles.

times.

Avogadro's Number

A MOLE of any substance contains as many elementary units (atoms and molecules) as the number of atoms in 12 g of the isotope of carbon-12.					
This number is called AVOGADRO's number $N_A = 6.02 \times 10^{23}$ particles/mol					
The mass of one mole of a substance is called MOLAR MASS symbolized by MM					
Units of MM are g/mol					
J Examples					
H_2 hy	drogen	2.02	g/mol		
He he	lium	4.0	g/mol		
N ₂ nit	rogen	28.0	g/mol		
O_2 ox	ygen	32.0	g/mol		
CO ₂ carbon dioxide 44.0 g/mol					

1 Mole of Particles

Molecular Weight and Molar Mass

• Molecular weight is the sum of atomic weights of all atoms in the molecule.

example: NaCl has a molecular weight of 58.5 a.m.u. this is composed of a single molecule of NaCl

• Molar mass = molecular weight in grams.

example: NaCI has a molar mass of 58.5 grams

this is composed of a 6.02 x10²³ molecules of NaCl

The Molar Mass and Number of Particles in One-Mole Quantities

Substance	Molar Mass	Number of Particles in One Mole
Carbon (C)	12.0 g	6.02 x 10 ²³ C atoms
Sodium (Na)	23.0 g	6.02 x 10 ²³ Na atoms
Iron (Fe)	55.9 g	6.02 x 10 ²³ Fe atoms
NaF (preventative for dental cavities	e 42.0 g)	6.02 x 10 ²³ NaF formula units
CaCO ₃ (antacid)	100.1 g	6.02×10^{23} CaCO ₃ formula units
C ₆ H ₁₂ O ₆ (glucose)180.0 g	6.02 x 10 ²³ glucose molecules
$C_8H_{10}N_4O_2$ (caffei	ne)194.0 g	6.02 x 10 ²³ caffeine molecules

1 mol = molar mass

1 mole = 22.4 L @ STP

1 mol = 6.02 x 10²³ particles

Stoichiometry Island Diagram

Mole-Mole Calculations

- These mole ratios can be used to calculate the moles of one chemical from the given amount of a different chemical
- Example: How many moles of chlorine is needed to react with 5 moles of sodium (without any sodium leftover)?

 $2 \text{ Na} + \text{Cl}_2 \rightarrow 2 \text{ NaCl}$

5 moles Na 1 mol $Cl_2 = 2.5$ moles Cl_2 2 mol Na

Mass-Mole Calculations

- Sometimes you are going to start with mass and will have to convert to moles of product or another reactant
- We use molar mass and the mole ratio to get to moles of the compound of interest
 - Calculate the number of moles of ethane (C₂H₆) needed to produce 10.0 g of water
- $2C_2H_6 + 7O_2 -> 4CO_2 + 6H_2O_1$ 10.0 g H₂O 1 mol H₂O 2 mol C₂H₆ = 0.185 mol C₂H₆

18.0 g H_2O 6 mol H_2O

Mole-Mass Calculations

- Most of the time in chemistry, the amounts are given in grams instead of moles
- We still go through moles and use the mole ratio, but now we also use molar mass to get to grams
 - Example: How many grams of chlorine are required to react completely with 5.00 moles of sodium to produce sodium chloride?

 $2 \text{ Na} + \text{Cl}_2 \rightarrow 2 \text{ NaCl}$

5.00 moles Na 1 mol Cl_2 70.90g Cl_2 = 177g Cl_2 2 mol Na 1 mol Cl_2

Mass-Mass Calculations

- Most often we are given a starting mass and want to find out the mass of a product we will get (called theoretical yield) or how much of another reactant we need to completely react with it (no leftover ingredients!)
- Now we must go from grams to moles, mole ratio, and back to grams of compound we are interested in

- Ex. Calculate how many grams of ammonia are produced when you react 2.00g of nitrogen with excess hydrogen.
- $N_2 + 3 H_2 -> 2 NH_3$ 2.00g N_2 1 mol N_2 2 mol NH_3 17.06g $NH_3 = 2.4 \text{ g } NH_3$ 28.02g N_2 1 mol N_2 1 mol N_3

Molar Volume at STP

a

Standard Temperature & Pressure 0°C and 1 atm

Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem

Mass Mountain

Liter Lake +

Particle Peninsula

Proportional Relationships

Stoichiometry

- mass relationships between substances in a chemical reaction
- based on the mole ratio

Mole Ratio

indicated by coefficients in a balanced equation

$2 \text{ Mg} + \text{O}_2 \rightarrow 2 \text{ MgO}$

Stoichiometry Problems

How many moles of KCIO₃ must decompose in order to produce 9 moles of oxygen gas?

Cu

Ag