The Mole Concept

Avogadro's Number $=6.022 \times 10^{23}$

Counting Atoms

- Chemistry is a quantitative science - we need a "counting unit."
- The MOLE
- 1 mole is the amount of substance that contains as many particles (atoms or molecules) as there are in 12.0 g of $\mathrm{C}-12$.

The Mole is Developed

Carbon Atoms	Hydrogen Atoms	
Number Mass (amu)	Number Mass (amu)	Mass carbon / Mass hydrogen
12	- 1	$\frac{12 \mathrm{amu}}{1 \mathrm{amu}}=\frac{12}{1}$
$\begin{gathered} 24 \\ {[2 \times 12]} \end{gathered}$	$\begin{gathered} 2 \\ {[2 \times 1]} \end{gathered}$	$\frac{24 \mathrm{amu}}{2 \mathrm{amu}}=\frac{12}{1}$
120 $[10 \times 12]$	••••• 10 $\bullet \bullet \bullet \bullet \bullet$ $[10 \times 1]$	$\frac{120 \mathrm{amu}}{10 \mathrm{amu}}=\frac{12}{1}$
$000 \bigcirc 0 \bigcirc 000$ 0000000000 000000000000 ○○○ [50 x 12] 000000000		$\frac{600 \mathrm{amu}}{50 \mathrm{amu}}=\frac{12}{1}$
$\begin{gathered}\text { Avogadro's } \\ \text { number }\end{gathered} \quad\left(6.02 \times 10^{23}\right) \times(12)$	Avogadro's number $\left(6.02 \times 10^{23}\right) \times(1)$	$\frac{\left(6.02 \times 10^{23}\right) \times(12)}{\left(6.02 \times 10^{23}\right) \times(1)}=\frac{12}{1}$

Particles in a Mole

Amadeo

 AvogadroAmedeo Avogadro (1766-1856)
never knew his own number; it was named in his honor by a

French scientist in 1909.
its value was first estimated
by Josef Loschmidt, an Austrian
chemistry teacher, in 1895.

quadrillions
 thousands 1 mole $=602213673600000000000000$ or 6.022×10^{23}

There is Avogadro's number of particles in a mole of any substance.

Careers in Chemistry Philosopher

Q: How much is a mole?

A: A mole is a quantity used by chemists to count atoms and molecules. A mole of something is equal to 6.02×10^{23} "somethings."

1 mole = 602200000000000000000000

Q: Can you give me an example to put that number in perspective?
A: A computer that can count 10,000,000 atoms per second would take 2,000,000,000 years to count 1 mole of a substance.

How Big is a Mole?

One mole of marbles would cover the entire Earth (oceans included) for a depth of three miles.

One mole of $\$ 100$ bills stacked one on top of another would reach from the Sun to Pluto and back 7.5 million times.

It would take light 9500 years to travel from the bottom to the top of a stack of 1 mole of $\$ 1$ bills.

Avogadro's Number

- A MOLE of any substance contains as many elementary units (atoms and molecules) as the number of atoms in 12 g of the isotope of carbon-12.
- This number is called AVOGADRO's number $N_{A}=6.02 \times 10^{23}$ particles $/ \mathrm{mol}$
- The mass of one mole of a substance is called MOLAR MASS symbolized by MM
- Units of MM are $\mathrm{g} / \mathrm{mol}$
- Examples
H_{2} hydrogen
$2.02 \mathrm{~g} / \mathrm{mol}$
He helium
N_{2} nitrogen
O_{2} oxygen
carbon dioxide $44.0 \mathrm{~g} / \mathrm{mol}$

1 Mole of Particles

Molecular Weight and Molar Mass

- Molecular weight is the sum of atomic weights of all atoms in the molecule.
example: NaCl has a molecular weight of 58.5 a.m.u.
this is composed of a single molecule of NaCl
- Molar mass = molecular weight in grams.
example: NaCl has a molar mass of 58.5 grams
this is composed of a 6.02×10^{23} molecules of NaCl

The Molar Mass and Number of Particles in One-Mole Quantities

Substance

Molar Mass Number of Particles in One Mole

Carbon (C)	12.0 g	$6.02 \times 10^{23} \mathrm{C}$ atoms
Sodium (Na)	23.0 g	$6.02 \times 10^{23} \mathrm{Na}$ atoms
Iron (Fe)	55.9 g	$6.02 \times 10^{23} \mathrm{Fe}$ atoms
NaF (preventative	42.0 g	$6.02 \times 10^{23} \mathrm{NaF}$ formula units
for dental cavities)		
CaCO_{3} (antacid)	100.1 g	$6.02 \times 10^{23} \mathrm{CaCO}_{3}$ formula units
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (glucose) 180.0 g	6.02×10^{23} glucose molecules	
$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$ (caffeine) 194.0 g	6.02×10^{23} caffeine molecules	

Atoms or Molecules

Multiply by 6.02×10^{23}
Divide by 6.02×10^{23}

Divide by atomic/molar mass from periodic table

Multiply by atomic/molar mass from periodic table

Stoichiometry Island Diagram

Mole-Mole Calculations

- These mole ratios can be used to calculate the moles of one chemical from the given amount of a different chemical
- Example: How many moles of chlorine is needed to react with 5 moles of sodium (without any sodium leftover)?

$$
2 \mathrm{Na}+\mathrm{Cl}_{2}->2 \mathrm{NaCl}
$$

5 moles $\mathrm{Na} 1 \mathrm{~mol} \mathrm{Cl}_{2}=2.5$ moles Cl_{2}
2 mol Na

Mass-Mole Calculations

- Sometimes you are going to start with mass and will have to convert to moles of product or another reactant
- We use molar mass and the mole ratio to get to moles of the compound of interest
- Calculate the number of moles of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ needed to produce 10.0 g of water
- $2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2}->4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
$10.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \quad 1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \quad 2 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}=0.185 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}$
$18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \quad 6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

Mole-Mass Calculations

- Most of the time in chemistry, the amounts are given in grams instead of moles
- We still go through moles and use the mole ratio, but now we also use molar mass to get to grams
- Example: How many grams of chlorine are required to react completely with 5.00 moles of sodium to produce sodium chloride?

$$
2 \mathrm{Na}+\mathrm{Cl}_{2}->2 \mathrm{NaCl}
$$

5.00 moles $\mathrm{Na} 1 \mathrm{~mol} \mathrm{Cl}_{2} \quad 70.90 \mathrm{~g} \mathrm{Cl}_{2}=177 \mathrm{~g} \mathrm{Cl}_{2}$ $2 \mathrm{~mol} \mathrm{Na} 1 \mathrm{~mol} \mathrm{Cl}_{2}$

Mass-Mass Calculations

- Most often we are given a starting mass and want to find out the mass of a product we will get (called theoretical yield) or how much of another reactant we need to completely react with it (no leftover ingredients!)
- Now we must go from grams to moles, mole ratio, and back to grams of compound we are interested in
- Ex. Calculate how many grams of ammonia are produced when you react 2.00 g of nitrogen with excess hydrogen.
- $\mathrm{N}_{2}+3 \mathrm{H}_{2}->2 \mathrm{NH}_{3}$
$2.00 \mathrm{~g} \mathrm{~N}_{2} 1 \mathrm{~mol} \mathrm{~N}_{2} 2 \mathrm{~mol} \mathrm{NH}_{3} \quad 17.06 \mathrm{~g} \mathrm{NH}_{3}=2.4 \mathrm{~g} \mathrm{NH}_{3}$ $28.02 \mathrm{~g} \mathrm{~N}_{2} 1 \mathrm{~mol} \mathrm{~N}_{2} \quad 1 \mathrm{~mol} \mathrm{NH}_{3}$

Molar Volume at STP

Standard Temperature \& Pressure $0^{\circ} \mathrm{C}$ and 1 atm

Peninsula

Proportional Relationships

- Stoichiometry
- mass relationships between substances in a chemical reaction
- based on the mole ratio
- Mole Ratio
- indicated by coefficients in a balanced equation

$$
2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}
$$

Stoichiometry Problems

How many moles of KCIO_{3} must decompose in order to produce 9 moles of oxygen gas?

$$
\underset{? \mathrm{~mol}}{\underset{2 \mathrm{KClO}_{3}}{ } \rightarrow 2 \mathrm{KCl}+} \begin{aligned}
& 3 \mathrm{O}_{2} \\
& 9 \mathrm{~mol}
\end{aligned}
$$

How many grams of silver will be formed from 12.0 g copper?
$\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{Ag}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
12.0 g

12.0	1 mol	2 mgl	107.87 gCu Cu		
	Ag	g Ag		$=40.55$	1 mol
:---:					
gCu					
Cu		1 mol			
:---:					
Ag	\quad	Ag			
:---:					

$$
x \mathrm{~g} \mathrm{Ag}=12.0 \mathrm{~g} \mathrm{Cu}\left(\frac{1 \mathrm{molCu}}{63.55 \mathrm{gCu}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{Ag}}{1 \mathrm{molCu}}\right)\left(\frac{107.87 \mathrm{~g} \mathrm{Ag}}{1 \mathrm{~mol} \mathrm{gg}^{-}}\right)=40 \mathrm{~g} \mathrm{Ag}
$$

