Chemical Reactions

Copyright © 2006 Pearson Prentice Hall, Inc.

2006, Prentice Hall

CHAPTER OUTLINE

- Chemical Reactions
- Chemical Equation
- Balancing Equations
- Types of Chemical Reactions
- Activity Series of Metals
- Aqueous Reactions
- Precipitation Reactions
- Neutralization and Other Reactions
- Heat in Chemical Reactions

CHEMICAL REACTIONS

- A chemical reaction is a rearrangement of atoms in which some of the original bonds are broken and new bonds are formed to give different chemical structures.
- In a chemical reaction, atoms are neither created, nor destroyed.
- A chemical reaction, as described above, 3 is supported by Dalton's postulatos

CHEMICAL REACTIONS

In a chemical reaction, atoms are neither created, nor destroyed

CHEMICAL REACTIONS

A chemical reaction can be detected by one of the following evidences:
 1. Change of color

2. Formation of a solid

3. Formation of a gas

4. Exchange of heat with surroundings

Why use Chemical Equations?

- 1. Shorthand way of describing a reaction
- 2. Provides information about the reaction
 - Formulas of reactants and products
 - States of reactants and products
 - Relative numbers of reactant and product molecules that are required
 - Can be used to determine amounts of the reactants and products

CHEMICAL EQUATIONS

A chemical equation is a shorthand expression for a chemical reaction.

CHEMICAL EQUATIONS

Reactants are separated from products by an arrow.

CHEMICAL EQUATIONS

Reaction conditions are placed over the arrow.

Al + Fe₂O₃
$$\xrightarrow{\Delta}$$
 Fe + Al₂O₃
heat
The physical state of the substances are
indicated by the symbols (s), (l), (g), (aq).
2 Al (s) + Fe₂O₃ (s) $\xrightarrow{\Delta}$ 2 Fe (l) + Al₂O₃ (s)

Symbols Used in Equations

- 1. energy symbols used above the arrow for decomposition reactions
 - $\Delta = heat$
 - hv = light
 - shock = mechanical
 - elec = electrical

- A balanced equation contains the same number of atoms on each side of the equation, and therefore obeys the law of conservation of mass.
- Many equations are balanced by trial and error; but it must be remembered that coefficients can be changed in order to balance an equation, but not subscripts of a correct formula.

The general procedure for balancing equations is:

The general procedure for balancing equations is: **Balance by inspection:** $CH_4 + O_2 \rightarrow CO_2 + H_2O_2$ Count and compare each **1C 1C** = element on both **4 H 2 H** sides of the **2O 3O** equation

Balance elements that appear only in one substance first.

Balance H

$$\begin{array}{ccc} \mathbf{CH}_4 + & \mathbf{O}_2 &\rightarrow & \mathbf{CO}_2 + \mathbf{H}_2\mathbf{O} \\ \mathbf{1} & \mathbf{CH}_4 + & \mathbf{O}_2 &\rightarrow & \mathbf{CO}_2 + \mathbf{2} & \mathbf{H}_2\mathbf{O} \end{array}$$

When finally done, check for the smallest coefficients possible

 $1 \operatorname{CH}_{4} + \operatorname{O}_{2} \rightarrow \operatorname{CO}_{2} + 2 \operatorname{H}_{2}\operatorname{O}$ $1 \operatorname{CH}_{4} + 2 \operatorname{O}_{2} \rightarrow \operatorname{CO}_{2} + 2 \operatorname{H}_{2}\operatorname{O}$

Examples:

$$2 \operatorname{AgNO}_{3} + \operatorname{H}_{2}S \rightarrow \operatorname{Ag}_{2}S + 2 \operatorname{HNO}_{3}$$

$$2 \operatorname{Al(OH)}_{3} + 3 \operatorname{H}_{2}SO_{4} \rightarrow \operatorname{Al}_{2}(SO_{4})_{3} + 6 \operatorname{H}_{2}O$$

$$\operatorname{Fe}_{3}O_{4} + 4 \operatorname{H}_{2} \rightarrow 3 \operatorname{Fe} + 4 \operatorname{H}_{2}O$$

$$2 \operatorname{C}_{4}H_{40} + 13 \operatorname{O}_{2} \rightarrow 8 \operatorname{CO}_{2} + 10 \operatorname{H}_{2}O$$

TYPES OF CHEMICAL REACTIONS

Chemical reactions are can be classified into five types: Based on what the atoms do
1. Synthesis or combination

2. Decomposition

3. Single replacement

4. Double replacement

5. Combustion

SYNTHESIS or COMBINATION

In these reactions, 2 elements or compounds combine to form another compound.

DECOMPOSITION

In these reactions, a compound breaks up to form 2 elements or simpler compound.

SINGLE REPLACEMENT

In these reactions, a more reactive element replaces a less reactive element in a compound.

DOUBLE REPLACEMENT

The kestions from mpnd mention the faction if a mother reason point of a second second

COMBUSTION

A reaction that involves oxygen as a reactant and produces large amounts of heat is classified as a combustion reaction.

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

Examples:

Classify each of the reactions below:

- 1. Mg + CuCl₂ \rightarrow MgCl₂ + Cu
- 2. $CaCO_3 \rightarrow CaO + CO_2$
- 3. $2 \text{ HCl} + \text{Ca(OH)}_2 \rightarrow \text{CaCl}_2 + 2 \text{ H}_2\text{O}$
- 4. 4 Fe + 3 $O_2 \rightarrow 2$ Fe₂ O_3

Single Displacement

The Zinc Replaces the Copper

 $Zn(s) + CuCl_2(aq) \rightarrow Cu(s) + ZnCl_2$

ACTIVITY SERIES OF METALS

- Activity series is a listing of metallic elements in descending order of reactivity.
- Hydrogen is also included in the series since it behaves similar to metals.
- Activity series tables are available in textbooks and other sources.

ACTIVITY SERIES OF METALS

- Elements listed higher will displace any elements listed below them.
- For example Na will displace any elements listed below it from one of its compounds.

ACTIVITY SERIES OF METALS

- Elements listed lower will not displace any elements listed above them.
- For example Ag cannot displace any elements listed above it from one of its compounds.

Ag (s) + CuCl₂ (aq) \rightarrow No Reaction

Example 1:

Use activity series to complete each reaction below. If no reaction occurs, write "No Reaction".

Example 2:

Use activity series to complete each reaction below. If no reaction occurs, write "No Reaction".

AQUEOUS REACTIONS

Many ionic solids dissolve in water to form ions.
 These substances are called electrolytes.

$$\frac{\text{NaCl}_{(s)} \xrightarrow{-H_2O} \text{Na}^+ + \text{Cl}_{(aq)}}{(aq)}$$

$$\frac{\text{K}_2\text{CrO}_{4(s)} \xrightarrow{-H_2O} 2 \text{K}_{(aq)}^+ + \text{CrO}_{4(aq)}^{2-}}{Ba(\text{NO}_3)_{2(s)} \xrightarrow{-H_2O} Ba_{(aq)}^{2+} + 2 \text{NO}_{3(aq)}^-}$$

AQUEOUS REACTIONS

When ionic substances dissolve in water they separate into ions.

AQUEOUS REACTIONS

- Aqueous reactions occur only when one of the following conditions is present:
 - 1. Formation of a solid:
- Precipitation
- 2. Formation of water: Neutralization
- 3. Formation of a gas:

Unstable product

PRECIPITATION REACTIONS

- An aqueous chemical reaction that produces a solid as one of its products is called a precipitation reaction.
- The insoluble solid formed in these reactions is called a precipitate.

 $K_2CrO_{4(aq)} + Ba(NO_3)_{2(aq)} \longrightarrow BaCrO_{4(s)} + 2 KNO_{3(aq)}$

Example of a Precipitation Reaction

$\frac{Pb(NO_3)_2(aq) + 2 KI(aq) \rightarrow 2 KNO_3(aq) + PbI_2(s)}{Factor}$

Copyright © 2006 Pearson Prentice Hall, Inc.

SOLUBILITY RULES

SOLUBILITY RULES

Example 1:

Write balanced equations for each reactions shown below. Indicate if no reaction occurs.

 $NaCl(aq) + AgNO_3(aq) \rightarrow NaNO_3(?) + AgCl(?)$

NaCl (aq) + AgNO₃ (aq)
$$\rightarrow$$
 NaNO₃ (aq) + AgCl (s)
soluble precipitate

Example 2:

Write balanced equations for each reactions shown below. Indicate if no reaction occurs.

 $NH_{4}Cl(aq) + KNO_{3}(aq) \rightarrow NH_{4}NO_{3}(?) + KCl(?)$ $NH_{4}Cl(aq) + KNO_{3}(aq) \rightarrow No Reaction KCl(aq)$ $\cdot soluble$

Example 3:

Write balanced equations for each reactions shown below. Indicate if no reaction occurs.

$$PbCl_2(aq) + 2 NaI(aq) \rightarrow PbI_2(?) + 2 NaCl(?)$$

 $\frac{PbCl_2(aq) + 2 \text{ NaI } (aq) \rightarrow PbI_2(s) + 2 \text{ NaCl } (aq)}{\text{precipitate}}$

Molecular, Complete Ionic, and Net Ionic Equations

A *molecular equation* is a chemical equation showing the complete, neutral formulas for every compound in a reaction.

A complete ionic equation is a chemical equation showing all of the species as they are actually present in solution.

A *net ionic equation* is an equation showing only the species that actually participate in the reaction. © 2012 Pearson Education, Inc.

Writing Chemical Equations for Reactions in Solution: Molecular and Complete Ionic Equations

• A molecular equation is an equation showing the complete neutral formulas for every compound in the reaction.

 $AgNO_3(aq) + NaCl(aq) \longrightarrow AgCl(s) + NaNO_3(aq)$

• Complete ionic equations show aqueous ionic compounds that normally dissociate in solution as they are actually present in solution.

 $Ag^{+}(aq) + NO_{3}^{-}(aq) + Na^{+}(aq) + Cl^{-}(aq) \longrightarrow AgCl(s) + Na^{+}(aq) + NO_{3}^{-}(aq)$

- When writing complete ionic equations, separate only aqueous ionic compounds into their constituent ions.
- <u>Do NOT separate solid, liquid, or gaseous compounds.</u>

Writing Chemical Equations for Reactions in Solution: Net Ionic Equations

- In the complete ionic equation, some of the ions in solution appear unchanged on both sides of the equation.
- These ions are called **spectator ions** because

© 2012 Pearson Education, Inc.

Writing Chemical Equations for Reactions in Solution: Proper Net Ionic Equations

- To simplify the equation, and to more clearly show what is happening, spectator ions can be omitted.
- Equations such as this one, which show only the species that actually participate in the reaction, are called net ionic equations.

$$Ag^+(aq) + CI^-(aq) \square AgCI(s)$$

NEUTRALIZATION REACTIONS

- Salts are ionic substances with the cation donated from the base and the anion donated from the acid.
- The most important reaction of acids and bases is called neutralization.
- In these reactions an acid combines with a base to form a salt and water.

HCl (aq) + NaOH (aq) $\frac{3}{4}$ NaCl (aq) + H₂O (l)

Examples:

Write balanced equations for each of the neutral-ization reactions shown below:

2 $\text{HNO}_3 + \text{Ba(OH)}_2 \rightarrow \text{Ba(NO}_3)_2 + 2 \text{H}_2\text{O}$ $\text{H}_2\text{SO}_4 + 2 \text{NaOH} \rightarrow \text{Na}_2\text{SO}_4 + 2 \text{H}_2\text{O}$

GAS FORMING REACTIONS

- Some chemical reactions produce gas because one of the products formed in the reaction is unstable.
- Three such products are:

Carbonic acid: $H_2CO_3(aq) \rightarrow CO_2(g) + H_2O(l)$ Sulfurous acid: $H_2SO_3(aq) \rightarrow SO_2(g) + H_2O(l)$ Ammonium: $NH_4OH(aq) \rightarrow NH_3(g) + H_2O(l)$

GAS FORMING REACTIONS

When either of these products appears in a chemical reaction, they should be replaced with their decomposition products. $2 \text{ HCl} + \text{Na}_2\text{CO}_2 \rightarrow 2 \text{ NaCl} + \text{H}_2\text{CO}_2$ $2 \text{ HNO}_3 + \text{K}_2\text{SO}_3 \rightarrow 2 \text{ KNO}_3 + \text{H}_2\text{SO}_3$ $2 \text{ HNO}_3 + \text{Na}_2\text{SO}_3 \rightarrow 2 \text{ KNO}_3 + \text{SO}_2 \text{ (g)} + \text{H}_2\text{O} \text{ (l)}_2$

Enthalpy: A Measure of the Heat Evolved or Absorbed in a Reaction

- Chemical reactions can be **exothermic** (they *emit* thermal energy when they occur).
- Chemical reactions can be *endothermic* (they *absorb* thermal energy when they occur).
- The *amount* of thermal energy emitted or absorbed by a chemical reaction, under conditions of constant pressure (which are common for most everyday reactions), can be quantified with a function called **enthalpy**.

Enthalpy: A Measure of the Heat Evolved or Absorbed in a Reaction

We define the enthalpy of reaction,
 ΔH_{rxn}, as the amount of thermal energy (or heat) that flows when a reaction occurs at constant pressure.

Sign of ΔH_{rxn}

- The sign of ΔH_{rxn} (positive or negative) depends on the *direction* in which thermal energy flows when the reaction occurs.
- Energy flowing *out* of the chemical system is like a withdrawal and carries a negative sign.
- Energy flowing *into* the system is like a deposit and carries a positive sign.

Exothermic and Endothermic reactions

• (a) In an exothermic reaction, energy is released into the surroundings. (b) In an endothermic reaction, energy is absorbed from the surroundings.

HEAT IN CHEMICAL REACTIONS

- In exothermic reaction, heat is produced and can be written as a product.
- In endothermic reaction, heat is required and can be written as a reactant.
- **Reactions that release heat are classified as exothermic.**
- Reactions that absorb heat are classified as endothermic.

$$H_2(g) + Cl_2(g) \rightarrow 2 HCl(g) + 185 kJ$$

N₂(g) + O₂(g) + 181 kJ $\rightarrow 2 NO(g)$

52

Classifying Reactions

- Also we can classify reactions by what happens:
- Redox reactions are the exchange of e⁻
- Redox are all reactions except?

OXIDATION-REDUCTION REACTIONS

- Reactions known as oxidation and reduction (redox) have many important applications in our everyday lives.
- Rusting of a nail or the reaction within your car batteries are two examples of redox reactions.
- In an oxidation-reduction reaction, electrons are transferred from one substance to another.
 If one substance loses electrons, another substance must gain electrons.

